
SLAB User Manual

Joel D. Miller

SLAB is a software-based real-time virtual acoustic environment (VAE) rendering system being
developed in the Spatial Auditory Displays Lab at NASA Ames Research Center.

Note: The SLAB User Release is a work-in-progress. Functionality described herein is subject
to change. This document will be revised frequently.

Contents

Introduction

System Requirements❍

Installation❍

Citing SLAB❍

Acknowledgements❍

●

Overviews

SLAB Render API❍

Coordinate System❍

Sound Sources❍

HRTF Databases❍

Error Handling❍

Tips❍

●

SLAB Render Plug-Ins

Overview❍

Starter Project❍

●

Source Code

SLABClient❍

●

SLAB User Manual

file:///C|/SLAB/doc/user/slabuserman.htm (1 of 2) [10/1/2003 11:36:27 AM]

rdiotic❍

rplugin❍

SLABX❍

Installer❍

Applications and Utilities

SLABScape❍

SLABServer❍

slabtools❍

Example Application❍

●

Appendix

Glossary❍

Known Issues❍

●

See also: SRAPI Reference Manual

SLAB User Manual v5.3.0
Copyright 2001-2003 U.S. Government as represented by the
Administrator of the National Aeronautics and Space Administration.

Initiated: July 5, 2000
Last Updated: September 10, 2003

SLAB User Manual

file:///C|/SLAB/doc/user/slabuserman.htm (2 of 2) [10/1/2003 11:36:27 AM]

file:///C|/SLAB/doc/ref/index.html

Introduction

System Requirements●

Installation●

Citing SLAB●

Acknowledgements●

System Requirements

The software and hardware components listed below are required and/or recommended for
developing SLAB applications.

Software

Operating System: Windows2000
SLAB is being developed under Windows2000. In theory, SLAB should be compatible with
Windows98SE/ME, but this has not been tested. Client applications have run successfully under
WindowsNT 4.0, Service Pack 3. NT host-mode applications, however, are likely to fail due to
NT's DirectSound emulation.

Low-latency Audio Interface: DirectSound 8.1
SLAB uses DirectSound to achieve low-latency audio output (e.g., ~24ms). The sound card used
with SLAB must have a non-emulated DirectSound driver installed. To run the SLABScape and
SLABServer applications, the DirectSound Runtime should be installed. To develop SLAB
applications, the DirectX SDK should be installed. If you have a previous DirectSound version
installed, it might not be necessary to upgrade. First, give SLAB a try; if you encounter
problems, you might want to upgrade. DirectSound 6 Runtime is installed with Windows98SE.
The Microsoft DirectX download site is: http://www.microsoft.com/directx/. Developer
information is available at: http://msdn.microsoft.com/directx/.

Note regarding latency under Windows2000 vs Windows98SE:
Under Windows2000, the DirectSound driver accesses the hardware through a WDM driver.
Some WDM drivers use the Windows KMixer which adds approximately 20ms of latency to
sound output. Windows98SE WDM drivers also appear to have this additional latency (versus
VXD drivers). SLAB's total internal latency is approximately equal to the sum of the
DirectSound buffer size, the smooth-time value, and the KMixer latency (for WDM drivers).

Compiler (optional): Microsoft Visual C++ .NET
A compiler is necessary for SLAB application development. SLAB is being developed using
Microsoft Visual C++ .NET. The SLAB header files and libraries have not been tested under
other development environments. Missing library errors have been noticed when linking with
the SLAB libraries using Microsoft Visual C++ 6.0. Thus, the SLAB libraries may not be
compatible with pre-.NET versions of Microsoft Visual C++.

Hardware

SLAB Server or Host Workstation

Introduction

file:///C|/SLAB/doc/user/chapters/introduction.htm (1 of 4) [10/1/2003 11:36:27 AM]

http://www.microsoft.com/directx/
http://msdn.microsoft.com/directx/

Computer Workstation:
Minimum recommended requirements: Intel 650MHz PIII CPU, 256MB RAM.

DirectSound Sound Card:
Windows98SE: Turtle Beach Montego II Sound Card (Montego II digital output is not
supported under Windows2000)
Windows2000: Creative Audigy

SLAB Client/Server Network

100MBit Ethernet Card

100MBit Ethernet Hub

2 100BaseTX (RJ-45) Ethernet Cables (client to hub and hub to SLAB Server)

Digital Output (optional)

Digital Output Device:
Windows98SE: Turtle Beach Montego II Digital I/O Upgrade
Windows2000: Creative Audigy

Digital-to-Analog Converter:
Lucid Technology ADA1000 A/D, D/A Converter

Headphone Display

Headphone Amplifier (optional):
Symetrix SX204 Headphone Amplifier

Headphones:
Sennheiser HD 545 Reference Headphones

Top

Installation

SLAB User Release Installation Instructions

SLAB is available for download at the SLAB Home Page:
http://human-factors.arc.nasa.gov/SLAB.

For installation instructions, see the SLAB User Release Installation Instructions under the
Downloads section of the SLAB Home Page.

Windows Sound Schemes

When listening to SLAB with headphones it is probably best to disable system sounds by
selecting the "No Sounds" sound scheme under Control Panel | Sounds and Multimedia | Sounds
| Scheme. Otherwise, an uncomfortably loud system sound might occur while listening to

Introduction

file:///C|/SLAB/doc/user/chapters/introduction.htm (2 of 4) [10/1/2003 11:36:27 AM]

http://human-factors.arc.nasa.gov/SLAB

SLAB.

Speakers Property

Some sound peripherals process the output signal based on the type of display attached to the
output (e.g., headphones versus desktop speakers). When using SLAB, it is best to select an
unprocessed output path under Control Panel | Sounds and Multimedia | Audio | Advanced |
Speakers | Speaker Setup.

Top

Citing SLAB

As a courtesy, the use of SLAB in published research should be acknowledged in the publication
by citing the SLAB Home Page:

[1] http://human-factors.arc.nasa.gov/SLAB

The preferred paper reference describing the SLAB User Release and its implementation:

[2] Miller, J. D. and Wenzel, E. M., "Recent Developments in SLAB: A Software-Based System
for Interactive Spatial Sound Synthesis," Proceedings of the International Conference on
Auditory Display, ICAD 2002, Kyoto, Japan, pp. 403-408, 2002.

Top

Acknowledgements

I would like to thank Beth Wenzel for her support, feedback, and for making SLAB possible,
Jonathan Abel for providing numerous physical modeling and signal processing examples, Mark
Anderson for programming assistance, and both Mark Anderson and Durand Begault for testing
the waters and offering many helpful suggestions. I would also like to thank Marlene Hernan,
Robert Padilla, and Robin Orans.

--joel

Developers

 Joel Miller lead designer and programmer
 Jonathan Abel physical modeling and signal processing MATLAB scripts
 Mark Anderson TrakLib Fastrak driver, SLABScape 3D View, SLABScape SLABScript

Editor, sockets and registration database assistance
 Mitch Clapp SLABScape 3D View models and textures, web-based registration code

Top

Introduction

file:///C|/SLAB/doc/user/chapters/introduction.htm (3 of 4) [10/1/2003 11:36:27 AM]

http://human-factors.arc.nasa.gov/SLAB

SLAB User Manual

Last Updated: September 5, 2003

Introduction

file:///C|/SLAB/doc/user/chapters/introduction.htm (4 of 4) [10/1/2003 11:36:27 AM]

Overviews

SLAB Render API●

Coordinate System●

Sound Sources●

HRTF Databases●

Error Handling●

Tips●

SLAB Render API

When developing SLAB applications, SLAB is accessed through the SLAB Render API
(SRAPI) encapsulated in the CSLABAPI interface. CSLABAPI is an abstract base class used to
access the CSLABHost and CSLABClient objects. If you wish to run SLAB locally (i.e., on the
same machine as the SLAB application), the CSLABHost object should be used. Conversely, if
you wish to run SLAB remotely (i.e., using a network and a dedicated SLAB server
workstation), the CSLABClient object should be used. By using the CSLABAPI interface, you
can select between local or remote usage at run-time. All host, client, and server functions are
available through CSLABAPI. If the function isn't supported for the selected network mode, the
function does nothing (e.g. if you allocate a host object and call a client function, the function
simply returns).

Note: the "Server Functions" seen in SLABAPI.h are part of the CSLABServer class interface.
This class is for writing SLAB server applications and is not included in the SLAB User
Release. The SLAB User Release contains the SLABServer application for providing SLAB
server functionality.

Further information on the SLAB Render API is available in the SRAPI Reference Manual.

Top

Coordinate System

SLAB uses a right-handed, FLT (Front-Left-Top) coordinate system (i.e., if fingers curled from
front to left, thumb points to top).

Location
+x front, through nose
+y left, through left ear
+z top, through top of head

Orientation
-yaw to right
+yaw to left
-pitch up

Overviews

file:///C|/SLAB/doc/user/chapters/overviews.htm (1 of 7) [10/1/2003 11:36:27 AM]

file:///C|/SLAB/doc/ref/index.html

+pitch down
+roll right
-roll left

Polar
+azimuth to right
-azimuth to left
+elevation up
-elevation down
+range forward
-range backward

Convolvotron and Polhemus azimuth and elevation

These definitions are compatible with the Polhemus Isotrak and Fastrak head trackers and the
Crystal River Engineering Convolvotron coordinate systems with the following exceptions:

SLAB azimuth = - Convolvotron and Polhemus azimuth
SLAB and Convolvotron elevation = - Polhemus elevation

Polhemus transmitter and receiver

The physical placement of the Polhemus transmitter and receiver often results in the following
configuration (as specified on the Fastrak transmitter): +X forward, +Y right, +Z down. Since
SLAB uses +Z up and +Y left, the signs of Y, Z, Yaw, and Pitch must be changed if your tracker
driver follows this convention.

Top

Sound Sources

SLAB supports two types of sound sources, Windows wave files (see SrcFile()) and software
signal generation (see the SrcGen functions). All sound sources must be allocated before calling
RenderStart() to initiate real-time rendering. A sound sources is given an ID value when it is
allocated. This ID is passed to the source control functions. The number of sources available is
limited by the computational resources of the SLAB workstation.

To change the source allocation configuration, call SrcFree() to free all sound sources. SrcFree()
cannot be called while processing. Once the previous sources have been freed, a new source
configuration can be allocated.

To generate sound sources not supported by the SrcGen functions, use SrcFile() in conjunction
with a Windows wave file editing application. Since SrcFile() can loop wave files continuously,
it can be used to create fixed periodic sound sources.

There are two methods of muting a sound source:

Call SrcGain() using a dB gain value much lower than -97.0 dB (-96.3 dB is the dynamic
range of 16-bit integer). Note: this does not affect the processing performed. The
computational load remains the same.

●

Call SrcEnable() to disable the source. The source is no longer rendered, eliminating the
source entirely. Disabling a source reduces computational load.

●

Overviews

file:///C|/SLAB/doc/user/chapters/overviews.htm (2 of 7) [10/1/2003 11:36:27 AM]

See Also: CSLABAPI Source Functions in the SRAPI Reference Manual.

Top

HRTF Databases

SLAB HRTF (Head-Related Transfer Function) databases contain the HRIR (Head-Related
Impulse Response) and ITD (Interaural Time Delay) information needed to perform
spatialization. The default SLAB HRTF database is "jdm.slh" and the default HRTF directory is
"<install dir>\HRTF". Use the SLABScape application to change these defaults (see menu item:
SLAB | SLAB Registry Settings...).

SLAB HRTF Database Format - Version 1

Version 1 databases are binary files with all values stored in 16-bit integer. They typically have
the suffix .dat. The following parameters are assumed:

Azimuth, number of = 13, (180 150 120 90 60 30 0 -30 -60 -90 -120 -150 -180)
Azimuth increment = 30
Azimuth zero index = 6
Elevation, number of = 11, (90 72 54 36 18 0 -18 -36 -54 -72 -90)
Elevation increment = 18
Elevation zero index = 5
Number of ears = 2
Number of ITD points = 143
ITD positive = left ear lag
ITD negative = right ear lag
Number of HRIR points = 256
Number of HRIR sample bytes = 2 (16-bit integer)
Maximum HRIR sample value = 32767
Minimum HRIR sample value = -32768
Float HRIR sample scaling factor = 32768.0f

The table below illustrates the HRIR and ITD data storage format (ordered by individual data
values):

 AZ EL
 180, 90, left ear, hrir pt 0 Left ear points
...
 hrir pt 255
 180, 90, right ear, hrir pt 0 Right ear points
...
 hrir pt 255
 180, 72, left ear, hrir pt 0 Elevations (grouped by azimuth)
...
 -90, right ear, hrir pt 255
 150, 90, left ear, hrir pt 0 Azimuths
...
-180, -90, right ear, hrir pt 255

Overviews

file:///C|/SLAB/doc/user/chapters/overviews.htm (3 of 7) [10/1/2003 11:36:27 AM]

file:///C|/SLAB/doc/ref/index.html

 180, 90, delay Delays
 180, 72, delay
...
-180, -90, delay

SLAB HRTF Database Format - Version 2

Version 1 to Version 2 changes:
1) The database now contains a header.
2) The 16-bit integer data type has been changed to single-precision floating-point.
3) The database files typically have a .slh suffix.

HRTF Database Header

typedef struct
{
short nVersion;
char strName[32]; // subject's name
char strDate[8]; // date measured
char strComment[256]; // text comment
short nAzInc; // degree increment of az locations
short nElInc; // degree increment of el locations
short nNumPts; // number of HRIR points per entry
long lSampleRate; // sample rate when capturing HRIR
} HRTFHeader;

The HRIR and ITD data immediately follow the header as specified above for Version 1. The
azimuth and elevation increments and the number of HRIR points are now determined from the
header.

See Also: CSLABAPI::LstHRTF() in the SRAPI Reference Manual.

Top

Error Handling

There are two error catching modes in SLAB: Non-Process Time and Process-Time. When
SLAB is processing (i.e., after a call to RenderStart()), SLAB is in the Process-Time error
catching mode. When SLAB is not processing (i.e., after the SLAB object is allocated, after a
call to RenderStop(), or after an error), SLAB is in the Non-Process Time error catching mode.

Why two modes? Two reasons:

API Thread and Process Thread
SLAB runs in two threads of execution, the API Thread (same as the user's thread) and
the Process Thread, a thread created during a call to RenderStart(). Errors can occur
inside the Process Thread without an API call (e.g., a state error in a Render plug-in not
directly connected to an API call). The user cannot check the return value of an API
function to catch this error (unless "polling" and then only during the next "error poll",
see below).

1.

Overviews

file:///C|/SLAB/doc/user/chapters/overviews.htm (4 of 7) [10/1/2003 11:36:27 AM]

file:///C|/SLAB/doc/ref/index.html

Update Loop in Client/Server Mode
Typically, after a call to RenderStart(), the SLAB user will be updating an acoustic scene
in some form of update loop (e.g. capturing listener position information with a head
tracker or generating a source trajectory). For an update rate of 120Hz, the update loop is
executed every 8.3ms. In client/server mode, it would be inefficient to send error packets
from the server to the client for every SRAPI call in the update loop.

2.

Blocking and Non-Blocking Functions

In client/server mode, the SRAPI functions are broken into two groups, blocking functions and
non-blocking functions. Blocking functions wait for an error packet to be returned from the
server, non-blocking functions do not. Blocking functions are typically called prior to
processing. Most non-blocking functions can be called at any time. Whether a function is
blocking or non-blocking is documented in the function's Remarks section in the SRAPI
Reference Manual.

Non-Process-Time Error Catching

Function Return Values
Almost all SRAPI calls return SLABError. Non-Process-Time errors are typically caught with
function return values. Non-blocking function errors in client/server mode, however, can only be
caught by polling a blocking function (polling is discussed below).

Process-Time Error Catching

There are two methods for catching Process-Time errors:

Error Messaging
When using Error Messaging, SLAB sends error messages to the user's application via
Windows messaging. Before calling RenderStart(), call SetNotify() specifying a
notification window and message ID value. If a Process-Time error occurs, the
notification message will be sent to the notification window. To catch the message, map
the notification message ID to a message handler using a CWnd message map. Use an
error query function to verify the notification corresponds to an error (notifications can
also be used to indicate the completion of one-shot playback).

1.

Error Polling
Whenever an error occurs, SLAB enters an "error state." In an error state, all SRAPI
functions return the current error. Error Polling refers to catching existing errors via
function return values or error status functions. In other words, the user is looking for an
error not necessarily caused by the function itself. For example, consider several
successive non-blocking SRAPI function calls in client/server mode. If the last function
call returns an error, the error actually belongs to a previous function call. This delay is
due to the time it takes the error to propagate through the messaging system and the
network

2.

Error Catching Summary

 Host Mode Methods Client/Server Mode
Function Types

Client/Server Mode
Methods

Non-Process
Time return value, poll

Blocking Function return value, poll

Non-Blocking Function blocking function poll

Blocking Function return value, poll, message

Overviews

file:///C|/SLAB/doc/user/chapters/overviews.htm (5 of 7) [10/1/2003 11:36:27 AM]

file:///C|/SLAB/doc/ref/index.html
file:///C|/SLAB/doc/ref/index.html

Process Time return value, poll,
message

Non-Blocking Function,
Process Thread poll, message

Error State

SLAB enters an "error state" whenever an error occurs.

In an error state:

rendering is stopped●

the sound output stream is stopped●

script processing is stopped●

all functions returning SLABError return the current error●

error information can be queried via ErrorState(), Error(), ErrorString(), and ErrorStack()●

error state maintained until explicitly cleared with ErrorClear()●

Error Functions Overview

The following functions exist for querying error information and clearing error state:

ErrorState(): returns true if in error state, false if not●

Error(): returns the current SLABError●

ErrorString(): returns a string describing the current error●

ErrorStack(): returns a string providing call stack error information for the current error●

ErrorClear(): clears error state●

SetNotify(): sets the notification window and the notification message ID value●

LogName(): sets the name of the log file used for logging error information in host-mode●

Reset(): resets SLAB●

See Also: CSLABAPI Error Functions in the SRAPI Reference Manual.

Top

Tips

Tips for writing psychoacoustic experimentation software, etc.:

To disable source-listener range-dependent gain scaling use SrcSpread(0).●

To place sound sources by specifying azimuth and elevation use LstPosition(0.0, 0.0,
0.0, 0.0, 0.0, 0.0) and SrcLocatePolar(idSrc, az, el, range). Note: SLAB does not have
a listener-relative source location function.

●

To specify sound source time delays use LstPosition(0.0, 0.0, 0.0, 0.0, 0.0, 0.0) and
SrcLocatePolar(idSrc, az, el, dSoundSpeed * time_delay).

●

Top

Overviews

file:///C|/SLAB/doc/user/chapters/overviews.htm (6 of 7) [10/1/2003 11:36:27 AM]

file:///C|/SLAB/doc/ref/index.html

SLAB User Manual

Last updated: May 29, 2003

Overviews

file:///C|/SLAB/doc/user/chapters/overviews.htm (7 of 7) [10/1/2003 11:36:27 AM]

SLAB Render Plug-Ins

Overview●

Starter Project●

Overview

All rendering in SLAB is performed with SLAB Render plug-ins. SLAB Render plug-ins are
subclassed from CRPlugIn, built as DLLs, and placed in the SLAB bin\rplugin directory. All
plug-ins found in this directory will be read into memory when a CSLABAPI object is allocated.
The SRAPI Render Functions exist for querying and selecting plug-ins. Through the CScene
class, Render plug-ins are given access to SLAB's scene parameters, input delay lines, and output
stream.

See Also: CSLABAPI Render Functions, CRPlugIn, and CScene in the SRAPI Reference
Manual.

Top

Starter Project

The rplugin and rdiotic projects in the SLAB src\ directory can be used as Render plug-in
examples. The rplugin project is also used as a starter project for creating user plug-ins. The
rdiotic project contains the source code for the SLAB monotic and diotic renderers and shows
how to place multiple plug-ins in one DLL.

Follow the steps below to create your own plug-in:

In MSVC, create a new DLL project using New | Projects | Win32 Dynamic-Link
Library. Choose "A simple DLL project." when prompted for the type of DLL project
to create.

1.

Delete the generated .cpp from the project and from the directory.2.

Copy rplugin.cpp from SLAB's src\rplugin\ directory to your new project directory.
Rename it if you wish. Add it to the project.

3.

Enter the SLAB include\ directory to Project | Settings... | Settings For: All
Configurations | C/C++ | Preprocessor | Additional include directories.

4.

For SLAB to find your DLL it must be reside in the SLAB bin\rplugin\ directory. For
debug DLLs, enter the name of your DLL appended to the SLAB bin\rplugin\ path as
follows: under Project | Settings... | Settings For: Win32 Debug | Link | Preprocessor |
Output file name, enter "<SLAB install dir>/bin/rplugin/r*d.dll" where '*' denotes a
name of your choosing ('r' indicates the DLL is a "render" plug-in). For release DLLs,
under Project | Settings... | Settings For: Win32 Release | Link | Preprocessor |
Output file name, enter "<SLAB install dir>/bin/rplugin/r*.dll".

5.

Top

SLAB Render Plug-Ins

file:///C|/SLAB/doc/user/chapters/plugin.htm (1 of 2) [10/1/2003 11:36:27 AM]

file:///C|/SLAB/doc/ref/index.html
file:///C|/SLAB/doc/ref/index.html

SLAB User Manual

Last Updated: May 29, 2003

SLAB Render Plug-Ins

file:///C|/SLAB/doc/user/chapters/plugin.htm (2 of 2) [10/1/2003 11:36:27 AM]

Source Code

SLABClient●

rdiotic●

rplugin●

SLABX●

Installer●

SLABClient

The source code to the SLABClient library can be found in <install dir>\lib\src\SLABC\. The
communication between the client and the server occurs in Wintel byte order (not network byte
order). The reasoning behind this is (1) we are a Wintel-based lab and therefore we do not want
to swap and unswap for each data value, and (2) I would have to modify both the client code and
the server code to use network byte order; as they say, if it ain't broke, don't fix it...

Currently, the SLABWire layer is not part of the SLAB User Release. Thus, to compile the
SLAB client, you'll need to set _SLABW_ to 0 in SLABAPI.cpp. This simply omits support for
the Windows-specific SLAB registry variables. So as to not overwrite the User Release library,
you'll probably want to remove the "..\..\" from the "Library | Output file name" project setting.

Should you choose to port the client to another platform, it is recommended you have access to
Microsoft Visual C++ for the MFC source code. The client software uses MFC for the sockets
implementation. Please post to the SLAB mailing list if you take this on. I'll offer what help I
can. It would be great to have Linux and Mac support...

Top

rdiotic

<install dir>\src\rdiotc\ contains the source code for the monotic and diotic SLAB Render
plug-ins. See starter project.

Top

rplugin

<install dir>\src\rplugin\ contains the SLAB Render plug-in starter project.

Top

Source Code

file:///C|/SLAB/doc/user/chapters/source.htm (1 of 2) [10/1/2003 11:36:27 AM]

SLABX

<install dir>\src\SLABX\ contains an SRAPI-based example application.

Top

Installer

<install dir>\src\Installer\ contains the Visual Studio.NET Setup and Deployment project for the
SLAB User Release. This project creates the SLAB.msi Windows Installer file. The Installer
project can be used to distribute works based on SLAB. See the SLAB Software Usage
Agreement for the legal terms governing SLAB-related distribution.

Top

SLAB User Manual

Last updated: May 29, 2003

Source Code

file:///C|/SLAB/doc/user/chapters/source.htm (2 of 2) [10/1/2003 11:36:27 AM]

Example Application

The SLAB User Release includes the SLABX example application which demonstrates how to
write and build a standard SLAB application using Microsoft Visual C++ (hereafter MSVC). The
SLAB User Release has only been tested with the Microsoft Visual C++ compiler.

SLABX contains two demos, Trajectory Demo and HRTF Database Per Source Demo. In the
Trajectory Demo, a white noise sound source is placed in a circular trajectory about the listener's
head. In the HRTF Database Per Source Demo, one wave file sound source is placed at
(0.5m,0.5m,0.0m) and another is placed at (0.5m,-0.5m,0.0m). The user can select between three
different HRTF databases for each source.

All instances of the directory "\SLAB\" below should be replaced by your SLAB installation
directory.

SLABX MSVC Dialog Application

SLABX is a standard MSVC dialog application. It was created using the following steps under
MSVC 6.0:

New Project
New | Projects | MFC AppWizard (exe)
MFC AppWizard - Step 1: Select dialog based.
MFC AppWizard - Step 2 of 4: Uncheck About box (keep it simple), check Windows Sockets (for
client/server support).
MFC AppWizard - Step 3 of 4: No change.
MFC AppWizard - Step 4 of 4: No change. Finish.

SLAB applications need to be linked with the SLAB, Windows Multimedia, and DirectSound
libraries. To avoid "DLL hell", static linking is recommended.

Project Settings
C/C++ Tab | Category: Preprocessor | Additional include directories
Settings For: All Configurations
Enter: \SLAB\include

Link Tab | Object/library modules:
Settings For: Win32 Debug
Enter: \SLAB\lib\slabhmd.lib \SLAB\lib\slabcmd.lib (the SLAB Host and Client Multithreaded
Debug libraries)
(for a Release Build, use slabhmr.lib and slabcmr.lib)

Link Tab | Object/library modules:
Settings For: All Configurations
Enter: winmm.lib \apps\mssdk\lib\dsound.lib (the Windows multimedia and DirectSound
libraries)
(for dsound.lib, use the pathname for your installation of DirectSound)

In SLABX, only two files contain SLAB code, SLABXDlg.cpp and SLABXDlg.h. These two
files are discussed below. Each has been edited to emphasize the SLAB-specific code.

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (1 of 9) [10/1/2003 11:36:28 AM]

SLABX Interface File

// SLABXDlg.h : header file

SLABAPI.h is the only SLAB header file necessary.

#include "SLABAPI.h" // SLAB

class CSLABXDlg : public CDialog
{
// Attributes
protected:

All SLAB interaction occurs through one CSLABAPI object. Declare a CSLABAPI* to
reference this object.

 CSLABAPI* m_pSLAB;

// Implementation
protected:
 // Generated message map functions
 //{{AFX_MSG(CSLABXDlg)

SLAB reports process-time errors via a Windows command message. You specify the
message to receive using SetNotify(). The easiest way to create and handle a message ID is to
add an invisible dummy button to a dialog using MSVC's ResourceView. Next, create a
message handler for the dummy button (ID ID_SLAB_NOTIFY):

 afx_msg void OnSlabNotify();
 //}}AFX_MSG
};

SLABX Implementation File

// SLABXDlg.cpp : implementation file

Alter these paths to reference your installation directory!

// wave file to play during HRTF per source demo
#define WAVE_FILE "\\SLAB\\wavs\\voice.wav"

// default SLAB Server IP address
#define DEF_SERVER "localhost"

// HRTF databases for HRTF per source demo
#define HRTF_DB "\\SLAB\\HRTF\\jdm.slh" // normal
#define HRTF_DB_ME "\\SLAB\\HRTF\\jdm_me.dat" // HRIRs equal
#define HRTF_DB_IE "\\SLAB\\HRTF\\jdm_ie.dat" // ITDs equal

//---
// DestroyWindow()

BOOL CSLABXDlg::DestroyWindow()
{

SLAB should be stopped and freed before the program exits. DestroyWindow() is the safest
place to perform clean-up related to Windows resources.

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (2 of 9) [10/1/2003 11:36:28 AM]

 // if SLAB processing, stop
 if(m_pSLAB)
 OnStop();

 return CDialog::DestroyWindow();
}

//---
// BOTH DEMOS
//---

//---
// OnStop()

void CSLABXDlg::OnStop()
{
 // if timer allocated, kill it (trajectory demo)
 if(m_nTimer)
 KillTimer(m_nTimer);

RenderStop() stops the processing started by RenderStart(). LstHRTFFree() frees an HRTF
database. SrcFree() frees all allocated sound sources. Deleting the CSLABAPI object frees
all resources associated with SLAB. These four steps are the preferred way to exit SLAB. A
time-stamped entry can be made to a log file with LogEntry() and LogTime() to indicate
when SLAB was exited. The log file's main purpose is to provide a SLAB error record.

 // stop processing and free sources
 m_pSLAB->RenderStop();
 if(m_idHRTF)
 m_pSLAB->LstHRTFFree(m_idHRTF);
 if(m_idHRTFme)
 m_pSLAB->LstHRTFFree(m_idHRTFme);
 if(m_idHRTFie)
 m_pSLAB->LstHRTFFree(m_idHRTFie);
 m_idHRTF = NULL;
 m_idHRTFme = NULL;
 m_idHRTFie = NULL;
 m_pSLAB->SrcFree();
 m_idSrc0 = NULL;
 m_idSrc1 = NULL;
 m_pSLAB->LogEntry("SLABX Exit");
 m_pSLAB->LogTime();

 delete m_pSLAB;
 m_pSLAB = NULL;
}

//---
// OnSLABNotify() - SLAB error reporting

void CSLABXDlg::OnSlabNotify()
{
 static char strFormat[] = "%s\r\n\r\nDetails:\r\n"
 "-----------------------------"
 "-----------------------------\r\n%s";
 char* strError;

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (3 of 9) [10/1/2003 11:36:28 AM]

 // if there was a SLAB error, display error, close SLAB
 if(m_pSLAB && m_pSLAB->ErrorState())
 {

A one sentence error description is available from ErrorString(). Detailed error
information can be obtained from ErrorStack(). Once the error has been reported, the user
clears the error with ErrorClear(). The safest response to a SLAB error is to exit SLAB.

 strError = (char*) malloc(strlen(strFormat) +
 strlen(m_pSLAB->ErrorString()) +
 strlen(m_pSLAB->ErrorStack()));
 sprintf(strError, strFormat, m_pSLAB->ErrorString(),
 m_pSLAB->ErrorStack());

 m_pSLAB->ErrorClear();
 OnStop();
 AfxMessageBox(strError);
 free(strError);
 }
}

//---
// TRAJECTORY DEMO
//---

//---
// OnStartTraj()

void CSLABXDlg::OnStartTraj()
{

Users can run SLAB locally on their workstations or remotely on a SLAB Server. Local
usage is referred to as "Host Mode" and remote usage is referred to as "Client/Server
Mode." The server mode is determined by the type of SLAB object allocated. To use Host
Mode, allocate a CSLABHost object using the SLABAPIHost() function. To use
Client/Server Mode, allocate a CSLABClient object using the CSLABAPIClient() function.
The objects should be accessed through the CSLABAPI interface. When using
Client/Server Mode, you need to specify the IP address of the SLAB Server.

 // create host-mode or client/server-mode CSLABAPI object
 if(m_buttonHostMode.GetCheck())
 {
 m_pSLAB = SLABAPIHost();
 }
 else
 {
 CString cstrServer;

 // get the SLAB Server IP address from the edit control
 m_editServer.GetWindowText(cstrServer);

 // SLAB Server
 m_pSLAB = SLABAPIClient((char*) (LPCSTR) cstrServer);
 }

 // make sure CSLABAPI object allocated
 if(!m_pSLAB)
 {
 AfxMessageBox("Failed to allocate SLAB object!");

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (4 of 9) [10/1/2003 11:36:28 AM]

 return;
 }

Use SetNotify() to select the window to receive SLAB process-time error messages. You
must also specify the command message ID that is sent when an error occurs. SLAB
process-time error handling is performed by handling this message. Since SLAB is a
real-time system, errors can occur between function calls (e.g. a sound output buffer
drop-out). Messaging is a convenient way to catch these errors.

 // set SLABAPI notification window
 // Note: ID_SLAB_NOTIFY is the ID of an invisible dummy button created
 // expressly for SLAB notification
 m_pSLAB->SetNotify(this, ID_SLAB_NOTIFY);

The SLAB log file is primarily used as an error record. This feature is not mandatory. The
file to use as the log file is set with LogFile() and log file entries are made with LogEntry().
Once a log file is specified, SLAB will add entries to the log file whenever an error occurs.

 // set SLABAPI host log file (ignored in client mode)
 m_pSLAB->LogName("SLABX");
 m_pSLAB->LogEntry("SLABX Init");

SLAB uses DirectSound for low-latency audio playback. When the write buffer is full, the
buffer contents are transferred to the DirectSound output buffer. These parameters are
modified to tune the latency/robustness tradeoff. The lower the output latency, the less
robust the playback and vice versa. The output latency is basically the output buffer size (in
bytes) divided by 176400 bytes/second (2 (stereo) * 2 bytes/sample (16-bit samples) * 44100
samples/second (sampling rate)). Thus, the output latency with the configuration below
would be 8192 bytes / 176400 bytes/second = 46ms. For WDM drivers (Win2k), an
additional 20ms of latency exists due to the WDM KMixer.

 // init DirectSound output device (output and write buffer sizes in bytes)
 m_pSLAB->OutDS(8192, 512);

SmoothTime() selects the time constant used for DSP parameter tracking. As the scene is
updated, new DSP parameters are generated. To avoid audible artifacts, the DSP
parameters are smoothed from one set of parameters to the next. Higher time constants
reduce the chance of audible artifacts, but the system response to scene updates may become
sluggish. Lower time constants increase the likelihood of audible artifacts, but provide
better responsiveness.

FIRPoints() adjusts the size of the FIR filter used to render HRTFs. The FIR filter size can
be any power of two between 16 and 128. The size of the filter can be reduced to free up
CPU resources.

 // init signal processing parameters
 m_pSLAB->SmoothTime(15.0);
 m_pSLAB->FIRPoints(128);

Several functions modify source parameters. SrcRadius() sets the radius of the source and
affects how fast the sound's volume decreases as the source-listener range increases.
SrcGenNoise() allocates a noise generator, returning a source ID. The source ID is used as a
parameter to the source scene functions to select the source to modify. The amplitude
parameter adjusts the minimum and maximum value of the samples generated. This value
can be thought of as an initial volume control. Once processing is begun, only SrcGain() can
be used to adjust the volume level.

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (5 of 9) [10/1/2003 11:36:28 AM]

Sources can be placed using Cartesian coordinates with SrcLocate() or using polar
coordinates with SrcLocatePolar(). The source gain is set with SrcGain() using a double
valued dB scale (e.g. 0.0 dB = passthru, -96.0 dB = off for 16-bit integer input). SrcEnable()
enables the rendering of the source. When a source is disabled, rendering calculations are
not performed, reducing CPU usage. SrcEnable(?, false) is an efficient way to mute a
source (versus the SrcGain() method used in this example).

 // init general source parameters
 m_pSLAB->SrcRadius(0.2);

 // init source-specific parameters
 m_dAz = 0.0;
 m_idSrc0 = m_pSLAB->SrcGenNoise(4096);
 m_pSLAB->SrcLocatePolar(m_idSrc0, m_dAz, 0.0, 2.0);
 m_pSLAB->SrcGain(m_idSrc0, 0.0);
 m_pSLAB->SrcEnable(m_idSrc0, true);

Three functions modify listener parameters. If the listener position data comes from a head
tracker (e.g. Polhemus Fastrak), the function LstSensorOffset() should be used to specify the
location of the head tracker sensor. LstPostion() specifies the position of the listener.
LstHRTF() specifies the HRTF database used for spatial rendering. The HRTF database is
loaded into memory with LstHRTFLoad(). To decrease the likelihood of sound output
underflow, load HRTFs before rendering is started. Be sure to free the database with
LstHRTFFree().

 // init listener parameters
 m_pSLAB->LstSensorOffset(0.0, 0.0, 0.0);
 m_pSLAB->LstPosition(0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

 m_idHRTF = m_pSLAB->LstHRTFLoad(HRTF_DB);
 if(!m_idHRTF)
 {
 AfxMessageBox("Failed to load HRTF:\r\n" HRTF_DB);
 OnStop();
 return;
 }

 m_pSLAB->LstHRTF(m_idHRTF);

RenderStart() initiates rendering.

 // start rendering
 m_pSLAB->RenderStart(RENDER_SPATIAL);

 // start a Windows timer for updating trajectory
 // note: 55ms is the shortest period possible with SetTimer()
 m_nTimer = SetTimer(1, 55, NULL);
}

//---
// OnTimer()

void CSLABXDlg::OnTimer(UINT nIDEvent)
{
 // increment azimuth
 m_dAz += 0.055; // 1 rad/s
 if(m_dAz >= dPIx2)
 m_dAz -= dPIx2;

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (6 of 9) [10/1/2003 11:36:28 AM]

SLAB does not have an update rate per se. Each scene update causes the DSP parameters to
be updated almost instantaneously (within 64 samples). Thus, the frequency of scene
updates determines the update rate of SLAB. In this example, a scene update occurs every
55ms, yielding an effective update rate of 18Hz. A typical SLAB update rate is 120Hz.

 // update source location
 m_pSLAB->SrcLocatePolar(0, m_dAz, 0.0, 2.0);

CDialog::OnTimer(nIDEvent);
}

//---
// HRTF PER SOURCE DEMO
//---

//---
// OnStartHrtf()

void
CSLABXDlg::OnStartHrtf()
{

Most of this function is identical to OnStartTraj() (see above). This function differs only in
the way the sources are allocated and placed. SrcFile() is called twice to allocate two looped
wave file sound sources. SrcLocate() places the sources using Cartesian coordinates.

 // init source-specific parameters
 m_idSrc0 = m_pSLAB->SrcFile(WAVE_FILE);
 m_idSrc1 = m_pSLAB->SrcFile(WAVE_FILE);
 m_pSLAB->SrcLocate(m_idSrc0, 0.5, 0.5, 0.0);
 m_pSLAB->SrcLocate(m_idSrc1, 0.5, -0.5, 0.0);
 m_pSLAB->SrcGain(m_idSrc0, 0.0);
 m_pSLAB->SrcGain(m_idSrc1, 0.0);
 m_pSLAB->SrcEnable(m_idSrc0, true);
 m_pSLAB->SrcEnable(m_idSrc1, true);
}

//---
void CSLABXDlg::OnSrc1norm()
{
 if(!m_pSLAB) return;

LstHRTF() can be used to change the HRTF database during real-time rendering. This
allows the user to compare the sound of one HRTF database to another. In this example,
three HRTF databases are available: one normal (the default SLAB HRTF database), one
modified so that all HRIRs equal the 0az,0el magnitude, and another modified so that all
ITDs equal the 0az,0el ITD (0az,0el ITD = 0 samples). Thus, the two primary spatialization
cues are isolated and compared. The functions OnSrc1me() and OnSrc1ie() load the
modified HRTF databases (see SLABXDlg.cpp).

SLAB supports listening to each sound source through its own HRTF database. If a second
parameter to LstHRTF() exists, it specifies a sound source/HRTF database association.

 // normal map, source 0
 m_pSLAB->LstHRTF(m_idHRTF, m_idSrc0);

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (7 of 9) [10/1/2003 11:36:28 AM]

}

//---
void CSLABXDlg::OnSrc1mute()
{
 if(!m_pSLAB) return;

SrcGain() allows sources to be gained or muted during real-time rendering. In this function,
a gain of -120.0 dB is chosen as an arbitrary mute value. Since -120.0 dB is below the
dynamic range threshold for 16-bit integer, it will completely attenuate the source. Note:
even if a source is not heard, it is still being rendered and, thus, consuming computational
resources!

 if(m_bMute1)
 {
 // mute gain, -120dB
 // (note: 20log10(1/2^16) = -96dB)
 m_pSLAB->SrcGain(m_idSrc0, -120.0);
 m_buttonMute1.SetWindowText("Unmute");
 }
 else
 {
 // pass-thru gain, 0dB
 m_pSLAB->SrcGain(m_idSrc0, 0.0);
 m_buttonMute1.SetWindowText("Mute");
 }

 m_bMute1 = !m_bMute1;
}

//---
void CSLABXDlg::OnSrc2norm()
{
 if(!m_pSLAB) return;

This function is similar to OnSrc1norm(), but sets the HRTF database used for the second
sound source.

 // normal map, source 1
 m_pSLAB->LstHRTF(m_idHRTF, m_idSrc1);
}

//---
void CSLABXDlg::OnSrc2mute()
{
 if(!m_pSLAB) return;

This function is similar to OnSrc1mute(), but adjusts the gain for the second sound source.

 if(m_bMute2)
 {
 // mute gain, -120dB
 // (note: 20log10(1/2^16) = -96dB)
 m_pSLAB->SrcGain(m_idSrc1, -120.0);
 m_buttonMute2.SetWindowText("Unmute");
 }
 else
 {
 // pass-thru gain, 0dB
 m_pSLAB->SrcGain(m_idSrc1, 0.0);
 m_buttonMute2.SetWindowText("Mute");

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (8 of 9) [10/1/2003 11:36:28 AM]

 }

 m_bMute2 = !m_bMute2;
}

SLAB User Manual

Last Updated: May 29, 2003

Example Application

file:///C|/SLAB/doc/user/chapters/example.htm (9 of 9) [10/1/2003 11:36:28 AM]

Applications and Utilities

SLABScape
SLABScape provides a graphical user interface for experimenting with the SLAB Render
API scene parameters. It is also used to alter the SLAB Registry Settings (e.g., Default
HRTF).

●

SLABServer
The SLABServer application allows a workstation to be dedicated as a stand-alone SLAB
virtual audio server.

●

slabtools
The slabtools are MATLAB utilities for visualizing and manipulating HRTF data.

●

Example Application
The SLABX example application demonstrates the use of the SLAB Render API.

●

SLAB User Manual

Last updated: June 30, 2003

Applications and Utilities

file:///C|/SLAB/doc/user/chapters/apps.htm [10/1/2003 11:36:28 AM]

SLABScape

SLABScape provides a graphical user interface to the SLAB Render API. SLABScape also
allows the user to specify sound source trajectories, enable Fastrak head tracking, edit and play
SLAB Scripts, A/B different rendering strategies, and visualize the environment via a Direct3D
display.

Contents:

Menus●

Toolbar●

Shortcuts●

Source Dialog●

Environment Dialog●

Listener Dialog●

Fastrak Settings Dialog●

SLAB Settings Dialog●

SLABScript Editor●

3D View●

Status Bar●

Menus

Menu definitions:

File

New - initializes scene parameters to their default settings.❍

Open... - prompts to open a .scn "SLAB Scene" file.

Note: SLABScape does not strictly adhere to the MFC (Microsoft Foundation
Classes) view/document model. If you attempt to reopen an open scene, MFC
prevents the open and does nothing. As a work-around, simply click the File New
button before reopening.

❍

Save - saves the current scene. The sound source and listener controlled by
controller (tracker or Firefly) setting is not saved, nor is the Render Plug-In ID if
it is above RENDER_PLUGIN. This is because it is not known if the controller
or renderer will be available next time SLABScape is executed.

❍

Save As... - prompts to save the current scene to a file.❍

Most Recently Used Files - lists recently used scene files.❍

Exit - exits the application.❍

●

View

Scene❍

●

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (1 of 8) [10/1/2003 11:36:28 AM]

Source Dialog... - displays the Source Dialog.■

Environment Dialog... - displays the Environment Dialog.■

Listener Dialog... - displays the Listener Dialog.■

Controllers

Fastrak Settings... - displays options for configuring a Polhemus Fastrak
tracker.

■

Firefly Settings... - displays options for initializing and configuring
Firefly. These controls are currently implemented in-house only.

■

❍

Simulation Settings... - displays simulation parameter options for tick update rate
and hand control.

❍

Sources Displayed - sets the number of sources displayed in the visual display.❍

Parameter Overlay - overlays the 2D view with source and listener scene
information. All distances are in meters, all angles in radians. Azimuth,
elevation, and range are relative to the origin.
 Sources: x, y, z, azimuth, elevation, range, gain
 Listener: x, y, z, yaw, pitch, roll

❍

Update Rate - displays the update rate of the SLAB Renderer and the visual
display (the value in parentheses) on the status bar.

❍

Monitor SLAB Autos - if SLAB is in host mode, monitors the positions of the
sources and the listener as defined by the SLAB Renderer (the SLAB Renderer
can automatically update its own parameters when performing a trajectory or
when scripting).

❍

Toolbar - controls the display of the toolbar.❍

Status Bar - controls the display of the status bar.❍

SLAB

Render - starts or stops the SLAB Renderer. Renders using the currently selected
renderer (see Plug-Ins menu).

❍

SLAB Settings... - provides access to all pre-render-time SLAB parameters
(except materials, see Environment Dialog). The signal processing parameters,
script settings, network settings, and output settings are set using this dialog.

❍

SLAB Registry Settings... - lists the SLAB installation registry settings. The
user can modify the default HRTF and the default HRTF directory registry
settings using this dialog.

❍

SLABScript Editor... - displays the SLABScript Editor.❍

●

Plug-Ins

About Plug-Ins... - displays information about all plug-ins found in the SLAB
Render plug-in directory (<install dir>\bin\rplugin). The SLAB Renderer must be
started before plug-in information is available.

❍

Installed Plug-Ins - all SLAB Render plug-ins will be added to the Plug-Ins
menu after the SLAB Renderer is started.

Warning: Only the Left-Monotic, Right-Monotic, Diotic, and DioticV plug-ins are

❍

●

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (2 of 8) [10/1/2003 11:36:28 AM]

affected by the M/D (monotic/diotic) gain setting on the source dialog. All other
plug-ins use the source gain setting. Thus, plug-ins that do not attenuate the
sound signal in their rendering model can result in a significant volume increase
when selected! (e.g., "Spatial" attenuates the signal due to spherical spreading and
the head-related impulse response in addition to the gain setting; "Plug-In
Example" does not attenuate beyond the gain setting.)

The following plug-ins are included in the SLAB User Release:

Spatial - selects the spatial SLAB Render plug-in.❍

Left-Monotic - selects the left-monotic SLAB Render plug-in.❍

Right-Monotic - selects the right-monotic SLAB Render plug-in.❍

Diotic - selects the diotic SLAB Render plug-in.❍

DioticV - selects the variable diotic (source y = 0.0) / monotic (source y left or
right) SLAB render plug-in.

❍

Plug-In Example - selects the example SLAB render plug-in (diotic).❍

Help

Help... - displays this help page.❍

About... - displays about dialog box.❍

●

Top

Toolbar

Toolbar button definitions (from left to right):

New - see Menus.●

Open... - see Menus.●

Save - see Menus.●

Source Dialog... - see Menus.●

Environment Dialog... - see Menus.●

Listener Dialog... - see Menus.●

SLAB Render - see Menus.●

SLAB Settings... - see Menus.●

HRTF 1 - selects HRTF 1 defined in Listener Dialog.●

HRTF 2 - selects HRTF 2 defined in Listener Dialog.●

HRTF 3 - selects HRTF 3 defined in Listener Dialog.●

Spatial - see Menus.●

Left Monotic - see Menus.●

Right Monotic - see Menus.●

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (3 of 8) [10/1/2003 11:36:28 AM]

Diotic - see Menus.●

Parameter Overlay - see Menus.●

Zoom Out - zooms-out on the 2D view. The zoom level changes the source and listener
placement slider ranges.

●

Zoom In - zooms-in on the 2D view. The zoom level changes the source and listener
placement slider ranges.

●

3D View - toggles between the 2D view and the 3D View. The 3D View is rendered
using Direct3D, so the quality of the display is determined by the Direct3D features of
your graphics card.

●

Top

Shortcuts

Command Shortcut Key

Sound Sources

Control source number x 1, 2, 3, 4

Cycle control c

Reset source location forward End

Up u

Down d

In i

Out o

Mute/UnMute Ins

Increase gain g

Decrease gain a

Sound Source Trajectory

Slower s

Faster f

Start/Stop Space

Change direction Enter

Step trajectory .

Listener

Move to origin Home

Forward Up Arrow

Backward Down Arrow

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (4 of 8) [10/1/2003 11:36:28 AM]

Left Left Arrow

Right Right Arrow

Up Page Up

Down Page Down

Spin /

Top

Source Dialog

The Source Dialog allows the user to manipulate source parameters while rendering. The
dialog's layout is similar to an audio mixer with a channel strip for each sound source. These
strips contain the familiar gain fader and mute button, but also include a source motion droplist, a
relative source location dialog button (REL), a current source controlled button (channel #), a
pause/play button (PAU), and a rewind button (REW).

The source motion droplist contains five options: None, Circle, Rectangle, Track, and Firefly.
The Circle and Rectangle trajectories are generated by SLABScape, not the SLAB Renderer (the
SLAB Renderer has a built in trajectory mechanism that is currently only supported by the
SLABScript Editor). The Circle and Rectangle trajectories occur in a horizontal plane. The
Circle radius is defined by the initial radius. The Rectangle dimensions are determined by the
initial location of the source. Keyboard shortcuts provide further trajectory control. The Track
option enables source tracking. This causes the sound source to follow the location of a
Polhemus Fastrak tracker receiver. The tracker is opened using the "Open Tracker" button on
the "Tracker Settings" dialog (View | Controllers menu). Firefly allows a source to be located
using USB camera capture. This option is currently implemented in-house only; it does nothing
in the User Release.

The REL button pops-up the Relative Source Location dialog. This allows the placement of a
source relative to the listener's head using azimuth, elevation, and range coordinates. This
operation places the listener at the origin. Relative source placement allows one to listen to a
specific location in an HRTF database or to investigate the effects of HRTF interpolation.

The channel# button determines the "current source." The current source is controlled via the
Location sliders on the right side of the dialog and by using keyboard shortcuts.

The Monotic-Diotic Gain slider sets the source gain for the Left-Monotic, Right-Monotic, Diotic,
and DioticV renderers. Warning: If both release and debug versions of the plug-in exist, the
debug version is not affected by this slider. Thus, a signification increase in volume may result
if the debug version is chosen!

The "Allocate Sources..." button pops-up the "Source Allocation" dialog for allocating sound
sources (Noise, Sine, Square, and File).

The "Source Radius" droplist sets the radius of the current sound source. The "Source Spread"
droplist sets the spherical spreading coefficient for the current sound source (0 = none, 1 =
normal, 2 = exaggerated).

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (5 of 8) [10/1/2003 11:36:28 AM]

Top

Environment Dialog

The Environment Dialog controls features of the listening environment. These features include
the dimensions of a rectangular room, the materials of the room surfaces, and the number of
sound images modeled. The number of sound images is controlled by the Reflections array of
checkboxes. D refers to the direct path, XP to the positive x-axis plane, and so on. The surface
materials are selected via the Surface Materials dialog displayed by pressing the Materials...
button.

Top

Listener Dialog

The Listener Dialog controls the listener location and orientation, tracking options, and HRTF
database selection. The Tracker Enable button enables head tracking. This causes the listener to
follow the location of a Polhemus Fastrak tracker receiver. The tracker is opened using the
"Open Tracker" button on the "Tracker Settings" dialog (View | Controllers menu). Selecting the
Orientation Only button locks the listener at the origin while listener yaw, pitch, roll continue to
be updated.

The HRTFs... button displays the "HRTF Databases" dialog. This dialog sets the HRTF
databases loaded by the HRTF 1, HRTF 2, and HRTF 3 toolbar buttons.

Top

Fastrak Settings Dialog

These settings initialize a Polhemus Fastrak electromagnetic tracking peripheral.

Com Port - Select the com port connected to the Fastrak. The Fastrak communication
settings (DIP switches) must be set to 115200 bps, 8 data bits, no parity, no flow control.

●

Hemisphere - Direction of valid Fastrak transmitter hemisphere (see Fastrak manual).●

Receiver 2 - Selecting "Hand" will enables and map the second Fastrak receiver to the
Hand. (The Hand is currently in development.) Enabling a second receiver drops the
Fastrak update rate from 120Hz to 60Hz.

●

System Com - Typically, SLABScape sets the com settings using the Microsoft Comm
API. Some com devices do not support this feature (e.g., some USB-to-serial adapters)
and use the Device Manager com settings instead. These devices will cause "Open
Tracker" to fail. Selecting this option bypasses the Comm API settings.

Note: for com devices that support Comm API com settings, this option will cause the
com port to be initialized with the most recent Comm API settings. Thus, only use this
option if you have to.

●

Open Fastrak - Initiates communication with the Fastrak. Opening the Fastrak sets the●

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (6 of 8) [10/1/2003 11:36:28 AM]

current settings and cannot be canceled.

Save Settings - Saves the current dialog settings in the registry.●

Restore Defaults - Restores dialog settings default settings.●

OK - Sets dialog settings.●

Cancel - Resets dialog settings to previous settings.●

Top

SLAB Settings Dialog

These settings initialize SLAB prior to rendering and are described in more detail as
non-process-time functions in the SRAPI Reference Manual.

Signal Processing Parameters - see the SRAPI Reference Manual.●

Script Settings - if the "Process script file while rendering" checkbox is checked, the
specified file will be parsed the next time the SLAB Renderer is started.

●

Network Settings - If the "Run SLAB in Host Mode" checkbox is not checked,
SLABScape attempts to connect to the specified SLAB Server. SLABScape uses the
slabserv.ini file in SLAB's bin directory to initialize the droplist.

●

Output Settings - for an explanation of the DirectSound Settings see the SRAPI
Reference Manual. If the "Output to memory and write to file" checkbox is checked,
SLABScape routes sound output to the specified file. In this mode, no sound is heard
through the sound peripheral. Since rendering does not occur in real-time, the
SLABScape user interface is not synchronized to sound output. For simple scenes,
SLAB will render faster than real-time; for complex scenes, SLAB will render slower
than real-time. This option is primarily for debugging, but can be used with the
SLABScript Editor to render a "canned" dynamic scene. Output is stopped when the
SLAB Renderer is stopped.

Caution: Sound file output is generated at 172 kb/s, so do not forget to stop the SLAB
Renderer!

●

Top

SLABScript Editor

The SLABScript Editor allows for the creation and auditioning of SLAB scripts.

Button definitions:

Add Event - displays a dialog for adding SLABScript commands. The default parameters
are all set to zero. Be sure to change this value for Source Index (valid values = 1-4).

●

Open... - opens a previously saved script.●

Save As... - saves the current script.●

PrepScape - prepares SLABScape for script playback:

enables script processing (enables checkbox: SLAB Settings | Script Settings |❍

●

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (7 of 8) [10/1/2003 11:36:28 AM]

Process script file while rendering)

sets the SLAB Settings script file to the last script loaded or saved (sets edit
control: SLAB Settings | Script Settings | File)

❍

enables SLAB auto monitoring (enables menu item: View | Monitor SLAB
Autos)

❍

To audition a script, press the PrepScape button and then start the Spatial renderer (select Spatial
Render plug-in, press SLAB Render toolbar button).

Top

3D View

The 3D View displays a Direct3D view of the SLABScape environment. Right-clicking on the
3D View brings up a context-sensitive menu for adjusting various 3D View options. If your
graphics adapter or desktop display settings do not support Direct3D acceleration, this button
will be disabled.

Top

Status Bar

The two status indicator panes in the lower-right of the SLABScape window show the following:

Update Rate Indicator - the number without parentheses indicates the rate at which the
SLAB Renderer is updated; the number within parentheses indicates the update rate of
the visual display.

●

Clip and Underflow Indicator - the "C=" field indicates the number of renderer mixer
clips (implementation renderer-dependent); the "U=" field indicates the number of
DirectSound underflows.

●

Top

SLAB User Manual

Last Updated: October 1, 2003

SLABScape

file:///C|/SLAB/doc/user/chapters/slabscape.htm (8 of 8) [10/1/2003 11:36:28 AM]

SLABServer

The SLABServer application allows a workstation to be dedicated as a stand-alone SLAB server.
In this configuration, the entire computational load is transferred to the server. This allows for
more robust rendering and frees user workstation resources. To communicate with the SLAB
server, allocate a CSLABClient object using SLABAPIClient().

The SLABServer User Interface

Server Log - displays SRAPI commands as they arrive. Since the following functions
can be received quite frequently, they are not logged: SrcLocate(), SrcLocatePolar(),
SrcGain(), and LstPosition().

●

Monitor - monitors the following parameters at a 15Hz update rate:

listener position (meters and degrees)❍

sound source location (meters)❍

listener-relative sound source azimuth and elevation (degrees)❍

sound source gain (linear gain scalar, not dB)❍

number of mixer clips❍

number of DirectSound underflows❍

number of packets received❍

number of packets received per second (updated every second)❍

●

Listen for Connection - begins listening for a socket connection from a SLAB client.●

Test - spatially renders a noise sound source to the left and a sine sound source to the
right of the listener. Note: since the sounds are spatially rendered, each will be heard in
both output channels

listener: (0.1m, 0.2m, 0.3m, 1.0deg, 2.0deg, 3.0deg)❍

sound source 1: (0.1m, 1.2m, 0.3m), gain = -2.0dB❍

sound source 2: (0.2m, -1.2m, -0.3m), gain = -1.0dB❍

●

Turn Monitor On - enables the Monitor.●

Exit - closes SLABServer.●

SLAB User Manual

Last Updated: December 19, 2002

SLABServer

file:///C|/SLAB/doc/user/chapters/slabserver.htm [10/1/2003 11:36:28 AM]

slabtools

The slabtools are MATLAB utilities for visualizing and manipulating HRTF data and for
visualizing SLAB processing. To use the slabtools, the slabtools directory should be added to
your MATLAB path. General slabtools help can be obtained by typing "help slabtools" at the
MATLAB command prompt. Individual tool help is available by typing "help <toolname>".

Definition of the variables map, hrir, and itd

These variables are similar to the Snapshot variables of the same name. Snapshot is an HRTF
measurement system developed by Crystal River Engineering.

hrir contains HRIR taps stored in rows. All left ear HRIRs are followed by all right ear
HRIRs (e.g. the right ear response hrir(:,i+size(map,2))corresponds to the left
ear response hrir(:,i)).

●

itd contains the interaural time delay (in samples).●

map maps azimuth and elevation database locations to hrir and itd indices (see hindex).
Each azimuth and elevation pair is a two-element column vector [el; az].

●

The number of columns in map, hrir, and itd is HRTF database-dependent. Since hrir contains
the left and right ear responses, it will have twice the number of colums as map and itd.

The use of map, hrir, and itd is identical to Snapshot with the following exception:

SLAB's map variable is grouped by azimuth (e.g. [[90; 180], [72; 180]]);
Snapshot's, by elevation (e.g. [[90; 180], [90; 150]])

●

sarc

sarc is the SLAB HRTF archive format. The goal of the sarc format is to provide a flexible
MATLAB HRTF data structure and storage format for HRTF manipulation, visualization, and
analysis. To learn more about sarc, type "help sarc" at the MATLAB command prompt.

sarc is presently in development! We are currently upgrading our HRTF measurement
system to the AuSIM HeadZap system. Thus, the sarc format will change to
accommodate the data generated by HeadZap. I would like to support HRTF data from
other formats as well (e.g., CIPIC). Any suggestions regarding the sarc format or similar
efforts welcome! Please send suggestions to Joel D. Miller at
jdmiller@mail.arc.nasa.gov.

●

Examples

SLAB\HRTF\jdm_ie.slh was created as follows:
>> mmitd('jdm.slh', 'jdm_ie.slh', 0, 0);

SLAB\HRTF\jdm_he.slh was created as follows:
>> mmhrir('jdm.slh', 'jdm_he.slh', 0, 0)

map2map()

map2map() is the intellectual property of Jonathan Abel and is covered under the same usage

slabtools

file:///C|/SLAB/doc/user/chapters/slabtools.htm (1 of 2) [10/1/2003 11:36:28 AM]

mailto:jdmiller@mail.arc.nasa.gov

restrictions outlined in the SLAB Software Usage Agreement. Many thanks to Jonathan Abel for
allowing map2map() to be released with the SLAB User Release!

SLAB User Manual

Last Updated: December 19, 2002

slabtools

file:///C|/SLAB/doc/user/chapters/slabtools.htm (2 of 2) [10/1/2003 11:36:28 AM]

Appendix

Glossary●

Known Issues●

Glossary

Client/Server Mode Client/Server Mode refers to running SLAB remotely on a separate
workstation.

Diotic Diotic is a Render plug-in that supports diotic auditory display.

DioticV DioticV is a Render plug-in that supports diotic, left-monotic, and
right-monotic auditory display.

DSP Function A DSP Function is a C++ class which is "plugged-into" SLAB's
signal flow architecture. This occurs in SLAB's SLABWire layer and
is hidden from the SLAB Render API user.

Host Mode Host Mode refers to running SLAB locally on the same workstation
as the user's application.

HRTF Database Set of HRIRs and ITDs measured about a sphere specified by
azimuth and elevation.

HRTF Map See HRTF Database.

LeftMonotic LeftMonotic is a Render plug-in that supports left-monotic auditory
display.

MSVC++ Microsoft Visual C++. The SLAB development environment.

RightMonotic RightMonotic is a Render plug-in that supports right-monotic
auditory display.

Render plug-in Render plug-ins are DLLs that can be loaded and inserted in the
SLAB rendering architecture. The SLAB Render API supports five
Render plug-ins: Spatial, DioticV, Diotic, LeftMonotic, and
RightMonotic. A Render plug-in is inserted into SLABWire as a
"DSP Function."

SLAB SLAB is short for Sound Lab. What "SLAB" refers to is
context-dependent. Generally speaking, SLAB refers to the entire
collection of SLAB-related material, applications, libraries,
documentation, etc. Frequently, however, "SLAB" will refer to one
of the constituent parts (e.g. the SLAB Spatial Renderer, the SLAB
Server, the SLABAPI Libraries, etc.).

SLAB Client A user application that uses the SLAB Client API to communicate
with the SLAB Server.

SLAB Client Library The SLAB Client Library contains the SLAB Render Client API.

Appendix

file:///C|/SLAB/doc/user/chapters/appendix.htm (1 of 3) [10/1/2003 11:36:28 AM]

SLAB Host Library The SLAB Host Library contains the SLAB Render Host API.

SLAB Libraries There are four SLAB libraries: Wire, Host, Client, and Server.

SLABWire Library The SLABWire Library contains the SLABWire layer, a "digital
wire" or, more specifically, a sample stream input to DSP to sample
stream output chain.

SLAB Render API The SLAB Render API (application programming interface) (SRAPI)
is the interface through which the user interacts with a SLAB Render
plug-in. This API is used to specify scene parameters and to control
rendering. There are two SLAB Render APIs of interest to the SLAB
user: the Host API (Host Mode) and the Client API (Client/Server
Mode). A third API exists for writing server applications, the Server
API.

SLAB Render API
Libraries

A subset of the SLAB Libraries referring to the Host, Client, and
Server libraries.

SLABWire Layer This layer is contained in the SLABWire Library and is hidden from
the SLAB Render API user. The SLAB Render API is built on top of
this layer.

SLAB Server A SLAB Workstation configured to run in Client/Server Mode. The
SLABServer application runs on this workstation.

SLAB Server Library The SLAB Server Library contains the SLAB Render Server API.

SLAB Workstation The SLAB Workstation is the workstation on which the SLAB
renderer is running.

SLABScape
Application

An application that demonstrates many of the features of SLAB.

SLABServer
Application

The application that runs on the SLAB Server to provide SLAB
rendering services to a SLAB Client.

Spatial Spatial is a Render plug-in for rendering HRTF-based virtual acoustic
environments.

SRAPI SLAB Render API.

VAE Virtual Acoustic Environment.

Top

Known Issues

SLAB does not detect all occurrences of DirectSound buffer underflow. Usually,
underflow results in an underflow counter increment. But, sometimes, stuttering is heard
without an underflow increment. This is most likely to occur when the CPU is at

●

Appendix

file:///C|/SLAB/doc/user/chapters/appendix.htm (2 of 3) [10/1/2003 11:36:28 AM]

maximum usage or a CPU usage spike occurs (e.g. reading a file). A missed underflow
can be caused by a late Windows timer update, allowing the DirectSound pointers to
wrap around the buffer to a valid location.

SLAB's client/server implementation is not robust. The following behavior has been
noticed when running SLABScape in client/server mode with SLABServer. If a source is
moving in a trajectory, the client packet receive function will most likely time-out at
some point. The packets are probably overwhelming the sockets interface. Also,
renderer enumeration can fail with SLABScape receiving an incomplete enumeration info
packet. The source of this behavior is not known.

●

The SLABScape "hand" is in development and not documented.●

slabref.pdf Acrobat Issues: (1) light blue background of SRAPI function name not in pdf,
(2) class hierarchy diagrams not in pdf (Acrobat doesn't support PNG), (3) sections in
strange order (order automatically generated by Acrobat).

●

ScriptRead() and ScriptWrite() are currently limited to 32 sources in client/server mode.●

Under Windows98, there appears to be a somewhat severe memory leak when
performing several (100s) of RenderStart()/RenderStop()'s. Unfortunately, it is not
reproducible, and, thus, very hard to track down. Under Windows2000, the leak is less
severe (or possibly non-existent (v5.1.0 test)). This bug is thought to be due to thread
behavior.

●

Under Windows98, a case has been noticed where the left and right channels swap when
performing several (100s) of RenderStart()/RenderStop()'s. This bug is thought to be
related to the bug above. This behavior has not been noticed under Windows2000.

●

Top

SLAB User Manual

Last Updated: June 27, 2003

Appendix

file:///C|/SLAB/doc/user/chapters/appendix.htm (3 of 3) [10/1/2003 11:36:28 AM]

	Local Disk
	SLAB User Manual
	Introduction
	Overviews
	SLAB Render Plug-Ins
	Source Code
	Example Application
	Applications and Utilities
	SLABScape
	SLABServer
	slabtools
	Appendix

